3.2.61 \(\int \frac {x (a+b \text {sech}^{-1}(c x))}{(d+e x^2)^{3/2}} \, dx\) [161]

3.2.61.1 Optimal result
3.2.61.2 Mathematica [A] (verified)
3.2.61.3 Rubi [A] (verified)
3.2.61.4 Maple [F]
3.2.61.5 Fricas [B] (verification not implemented)
3.2.61.6 Sympy [F]
3.2.61.7 Maxima [F]
3.2.61.8 Giac [F]
3.2.61.9 Mupad [F(-1)]

3.2.61.1 Optimal result

Integrand size = 21, antiderivative size = 87 \[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{\sqrt {d} e} \]

output
b*arctanh((e*x^2+d)^(1/2)/d^(1/2)/(-c^2*x^2+1)^(1/2))*(1/(c*x+1))^(1/2)*(c 
*x+1)^(1/2)/e/d^(1/2)+(-a-b*arcsech(c*x))/e/(e*x^2+d)^(1/2)
 
3.2.61.2 Mathematica [A] (verified)

Time = 21.06 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.55 \[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}-\frac {b \sqrt {\frac {1-c x}{1+c x}} \sqrt {1-c^2 x^2} \sqrt {-d-e x^2} \arctan \left (\frac {\sqrt {d} \sqrt {1-c^2 x^2}}{\sqrt {-d-e x^2}}\right )}{\sqrt {d} e (-1+c x) \sqrt {d+e x^2}} \]

input
Integrate[(x*(a + b*ArcSech[c*x]))/(d + e*x^2)^(3/2),x]
 
output
-((a + b*ArcSech[c*x])/(e*Sqrt[d + e*x^2])) - (b*Sqrt[(1 - c*x)/(1 + c*x)] 
*Sqrt[1 - c^2*x^2]*Sqrt[-d - e*x^2]*ArcTan[(Sqrt[d]*Sqrt[1 - c^2*x^2])/Sqr 
t[-d - e*x^2]])/(Sqrt[d]*e*(-1 + c*x)*Sqrt[d + e*x^2])
 
3.2.61.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {6853, 2036, 354, 104, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 6853

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {1}{x \sqrt {1-c x} \sqrt {c x+1} \sqrt {e x^2+d}}dx}{e}-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 2036

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {1}{x \sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx}{e}-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {1}{x^2 \sqrt {1-c^2 x^2} \sqrt {e x^2+d}}dx^2}{2 e}-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \int \frac {1}{x^4-d}d\frac {\sqrt {e x^2+d}}{\sqrt {1-c^2 x^2}}}{e}-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \text {arctanh}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{\sqrt {d} e}-\frac {a+b \text {sech}^{-1}(c x)}{e \sqrt {d+e x^2}}\)

input
Int[(x*(a + b*ArcSech[c*x]))/(d + e*x^2)^(3/2),x]
 
output
-((a + b*ArcSech[c*x])/(e*Sqrt[d + e*x^2])) + (b*Sqrt[(1 + c*x)^(-1)]*Sqrt 
[1 + c*x]*ArcTanh[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[1 - c^2*x^2])])/(Sqrt[d]*e 
)
 

3.2.61.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2036
Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p 
_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.), x_Symbol] :> Int[u*(a1*a2 + b1*b2 
*x^n)^p*(c + d*x^n)^q, x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x] && E 
qQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] || (GtQ[a1, 0] && Gt 
Q[a2, 0]))
 

rule 6853
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcSech[c*x])/(2*e*(p + 1))), 
 x] + Simp[b*(Sqrt[1 + c*x]/(2*e*(p + 1)))*Sqrt[1/(1 + c*x)]   Int[(d + e*x 
^2)^(p + 1)/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, e 
, p}, x] && NeQ[p, -1]
 
3.2.61.4 Maple [F]

\[\int \frac {x \left (a +b \,\operatorname {arcsech}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {3}{2}}}d x\]

input
int(x*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x)
 
output
int(x*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x)
 
3.2.61.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 183 vs. \(2 (57) = 114\).

Time = 0.29 (sec) , antiderivative size = 379, normalized size of antiderivative = 4.36 \[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=\left [-\frac {4 \, \sqrt {e x^{2} + d} b d \log \left (\frac {c x \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 1}{c x}\right ) + 4 \, \sqrt {e x^{2} + d} a d - {\left (b e x^{2} + b d\right )} \sqrt {d} \log \left (\frac {{\left (c^{4} d^{2} - 6 \, c^{2} d e + e^{2}\right )} x^{4} - 8 \, {\left (c^{2} d^{2} - d e\right )} x^{2} - 4 \, {\left ({\left (c^{3} d - c e\right )} x^{3} - 2 \, c d x\right )} \sqrt {e x^{2} + d} \sqrt {d} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 8 \, d^{2}}{x^{4}}\right )}{4 \, {\left (d e^{2} x^{2} + d^{2} e\right )}}, -\frac {2 \, \sqrt {e x^{2} + d} b d \log \left (\frac {c x \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 1}{c x}\right ) + 2 \, \sqrt {e x^{2} + d} a d - {\left (b e x^{2} + b d\right )} \sqrt {-d} \arctan \left (-\frac {{\left ({\left (c^{3} d - c e\right )} x^{3} - 2 \, c d x\right )} \sqrt {e x^{2} + d} \sqrt {-d} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}}}{2 \, {\left (c^{2} d e x^{4} + {\left (c^{2} d^{2} - d e\right )} x^{2} - d^{2}\right )}}\right )}{2 \, {\left (d e^{2} x^{2} + d^{2} e\right )}}\right ] \]

input
integrate(x*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x, algorithm="fricas")
 
output
[-1/4*(4*sqrt(e*x^2 + d)*b*d*log((c*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 1)/ 
(c*x)) + 4*sqrt(e*x^2 + d)*a*d - (b*e*x^2 + b*d)*sqrt(d)*log(((c^4*d^2 - 6 
*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 - 4*((c^3*d - c*e)*x^3 - 2*c*d 
*x)*sqrt(e*x^2 + d)*sqrt(d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 8*d^2)/x^4))/ 
(d*e^2*x^2 + d^2*e), -1/2*(2*sqrt(e*x^2 + d)*b*d*log((c*x*sqrt(-(c^2*x^2 - 
 1)/(c^2*x^2)) + 1)/(c*x)) + 2*sqrt(e*x^2 + d)*a*d - (b*e*x^2 + b*d)*sqrt( 
-d)*arctan(-1/2*((c^3*d - c*e)*x^3 - 2*c*d*x)*sqrt(e*x^2 + d)*sqrt(-d)*sqr 
t(-(c^2*x^2 - 1)/(c^2*x^2))/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)))/(d 
*e^2*x^2 + d^2*e)]
 
3.2.61.6 Sympy [F]

\[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=\int \frac {x \left (a + b \operatorname {asech}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(x*(a+b*asech(c*x))/(e*x**2+d)**(3/2),x)
 
output
Integral(x*(a + b*asech(c*x))/(d + e*x**2)**(3/2), x)
 
3.2.61.7 Maxima [F]

\[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x}{{\left (e x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x, algorithm="maxima")
 
output
b*integrate(x*log(sqrt(1/(c*x) + 1)*sqrt(1/(c*x) - 1) + 1/(c*x))/(e*x^2 + 
d)^(3/2), x) - a/(sqrt(e*x^2 + d)*e)
 
3.2.61.8 Giac [F]

\[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x}{{\left (e x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)*x/(e*x^2 + d)^(3/2), x)
 
3.2.61.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{3/2}} \,d x \]

input
int((x*(a + b*acosh(1/(c*x))))/(d + e*x^2)^(3/2),x)
 
output
int((x*(a + b*acosh(1/(c*x))))/(d + e*x^2)^(3/2), x)